Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2295429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38153260

RESUMO

Women are at significantly greater risk of metabolic dysfunction after menopause, which subsequently leads to numerous chronic illnesses. The gut microbiome is associated with obesity and metabolic dysfunction, but its interaction with female sex hormone status and the resulting impact on host metabolism remains unclear. Herein, we characterized inflammatory and metabolic phenotypes as well as the gut microbiome associated with ovariectomy and high-fat diet feeding, compared to gonadal intact and low-fat diet controls. We then performed fecal microbiota transplantation (FMT) using gnotobiotic mice to identify the impact of ovariectomy-associated gut microbiome on inflammatory and metabolic outcomes. We demonstrated that ovariectomy led to greater gastrointestinal permeability and inflammation of the gut and metabolic organs, and that a high-fat diet exacerbated these phenotypes. Ovariectomy also led to alteration of the gut microbiome, including greater fecal ß-glucuronidase activity. However, differential changes in the gut microbiome only occurred when fed a low-fat diet, not the high-fat diet. Gnotobiotic mice that received the gut microbiome from ovariectomized mice fed the low-fat diet had greater weight gain and hepatic gene expression related to metabolic dysfunction and inflammation than those that received intact sham control-associated microbiome. These results indicate that the gut microbiome responds to alterations in female sex hormone status and contributes to metabolic dysfunction. Identifying and developing gut microbiome-targeted modulators to regulate sex hormones may be useful therapeutically in remediating menopause-related diseases.


Assuntos
Microbioma Gastrointestinal , Humanos , Feminino , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Camundongos Endogâmicos C57BL
2.
Plasmid ; 128: 102708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967733

RESUMO

The majority of large multiresistance plasmids of Staphylococcus aureus utilise a RepA_N-type replication initiation protein, the expression of which is regulated by a small antisense RNA (RNAI) that overlaps the rep mRNA leader. The pSK41/pGO1-family of conjugative plasmids additionally possess a small (86 codon) divergently transcribed ORF (orf86) located upstream of the rep locus. The product of pSK41 orf86 was predicted to have a helix-turn-helix motif suggestive of a likely function in transcriptional repression. In this study, we investigated the effect of Orf86 on transcription of thirteen pSK41 backbone promoters. We found that Orf86 only repressed transcription from the rep promoter, and hence now redesignate the product as Cop. Over-expression of Cop in trans reduced the copy number of pSK41 mini-replicons, both in the presence and absence of rnaI. in vitro protein-DNA binding experiments with purified 6 × His-Cop demonstrated specific DNA binding, adjacent to, and partially overlapping the -35 hexamer of the rep promoter. The crystal structure of Cop revealed a dimeric structure similar to other known transcriptional regulators. Cop mRNA was found to result from "read-through" transcription from the strong RNAI promoter that escapes the rnaI terminator. Thus, PrnaI is responsible for transcription of two distinct negative regulators of plasmid copy number; the antisense RNAI that primarily represses Rep translation, and Cop protein that can repress rep transcription. Deletion of cop in a native plasmid did not appear to impact copy number, indicating a cryptic auxiliary role.


Assuntos
Replicação do DNA , Staphylococcus aureus , Plasmídeos/genética , Staphylococcus aureus/genética , Sequência de Bases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA , RNA Mensageiro
3.
Cell Chem Biol ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918401

RESUMO

Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.

4.
Cell Chem Biol ; 30(11): 1402-1413.e7, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37633277

RESUMO

Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Indicã/farmacologia , Indicã/metabolismo , Triptofanase , Microbioma Gastrointestinal/fisiologia , Indóis/farmacologia , Indóis/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Mamíferos/metabolismo
5.
Sci Adv ; 9(18): eadg3390, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146137

RESUMO

Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human ß-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood. Here, we define the 53 unique GUSs in the human oral microbiome and examine diverse GUS orthologs from periodontitis-associated pathogens. Oral bacterial GUS enzymes are more efficient polysaccharide degraders and processers of biomarker substrates than the human enzyme, particularly at pHs associated with disease progression. Using a microbial GUS-selective inhibitor, we show that GUS activity is reduced in clinical samples obtained from individuals with untreated periodontitis and that the degree of inhibition correlates with disease severity. Together, these results establish oral GUS activity as a biomarker that captures both host and microbial contributions to periodontitis, facilitating more efficient clinical monitoring and treatment paradigms for this common inflammatory disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças Periodontais , Periodontite , Humanos , Glucuronidase/metabolismo , Microbioma Gastrointestinal/fisiologia , Doenças Periodontais/etiologia , Periodontite/microbiologia , Inibidores Enzimáticos/farmacologia
6.
Gut Microbes ; 15(1): 2203963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122075

RESUMO

Prodrugs reliant on microbial activation are widely used but exhibit a range of efficacies that remain poorly understood. The anti-inflammatory compound 5-aminosalicylic acid (5-ASA), which is packaged in a variety of azo-linked prodrugs provided to most Ulcerative Colitis (UC) patients, shows confounding inter-individual variabilities in response. Such prodrugs must be activated by azo-bond reduction to form 5-ASA, a process that has been attributed to both enzymatic and non-enzymatic catalysis. Gut microbial azoreductases (AzoRs) are the first catalysts shown to activate azo-linked drugs and to metabolize toxic azo-chemicals. Here, we chart the scope of the structural and functional diversity of AzoRs in health and in patients with the inflammatory bowel diseases (IBDs) UC and Crohn's Disease (CD). Using structural metagenomics, we define the landscape of gut microbial AzoRs in 413 healthy donor and 1059 IBD patient fecal samples. Firmicutes encode a significantly higher number of unique AzoRs compared to other phyla. However, structural and biochemical analyses of distinct AzoRs from the human microbiome reveal significant differences between prevalent orthologs in the processing of toxic azo-dyes, and their generally poor activation of IBD prodrugs. Furthermore, while individuals with IBD show higher abundances of AzoR-encoding gut microbial taxa than healthy controls, the overall abundance of AzoR-encoding microbes is markedly low in both disease and health. Together, these results establish that gut microbial AzoRs are functionally diverse but sparse in both health and disease, factors that may contribute to non-optimal processing of azo-linked prodrugs and idiopathic IBD drug responses.


Assuntos
Combinação Besilato de Anlodipino e Olmesartana Medoxomila , Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Pró-Fármacos , Humanos , Mesalamina/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico
7.
Nat Microbiol ; 8(4): 611-628, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914755

RESUMO

Bile acids (BAs) mediate the crosstalk between human and microbial cells and influence diseases including Clostridioides difficile infection (CDI). While bile salt hydrolases (BSHs) shape the BA pool by deconjugating conjugated BAs, the basis for their substrate selectivity and impact on C. difficile remain elusive. Here we survey the diversity of BSHs in the gut commensals Lactobacillaceae, which are commonly used as probiotics, and other members of the human gut microbiome. We structurally pinpoint a loop that predicts BSH preferences for either glycine or taurine substrates. BSHs with varying specificities were shown to restrict C. difficile spore germination and growth in vitro and colonization in pre-clinical in vivo models of CDI. Furthermore, BSHs reshape the pool of microbial conjugated bile acids (MCBAs) in the murine gut, and these MCBAs can further restrict C. difficile virulence in vitro. The recognition of conjugated BAs by BSHs defines the resulting BA pool, including the expansive MCBAs. This work provides insights into the structural basis of BSH mechanisms that shape the BA landscape and promote colonization resistance against C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Humanos , Clostridioides , Ácidos e Sais Biliares , Amidoidrolases
8.
Drug Metab Dispos ; 51(4): 427-435, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36623880

RESUMO

Testosterone exhibits high variability in pharmacokinetics and glucuronidation after oral administration. Although testosterone metabolism has been studied for decades, the impact of UGT2B17 gene deletion and the role of gut bacterial ß-glucuronidases on its disposition are not well characterized. We first performed an exploratory study to investigate the effect of UGT2B17 gene deletion on the global liver proteome, which revealed significant increases in proteins from multiple biological pathways. The most upregulated liver proteins were aldoketoreductases [AKR1D1, AKR1C4, AKR7A3, AKR1A1, and 7-dehydrocholesterol reductase (DHCR7)] and alcohol or aldehyde dehydrogenases (ADH6, ADH1C, ALDH1A1, ALDH9A1, and ALDH5A). In vitro assays revealed that AKR1D1 and AKR1C4 inactivate testosterone to 5ß-dihydrotestosterone (5ß-DHT) and 3α,5ß-tetrahydrotestosterone (3α,5ß-THT), respectively. These metabolites also appeared in human hepatocytes treated with testosterone and in human serum collected after oral testosterone dosing in men. Our data also suggest that 5ß-DHT and 3α, 5ß-THT are then eliminated through glucuronidation by UGT2B7 in UGT2B17 deletion individuals. Second, we evaluated the potential reactivation of testosterone glucuronide (TG) after its secretion into the intestinal lumen. Incubation of TG with purified gut microbial ß-glucuronidase enzymes and with human fecal extracts confirmed testosterone reactivation into testosterone by gut bacterial enzymes. Both testosterone metabolic switching and variable testosterone activation by gut microbial enzymes are important mechanisms for explaining the disposition of orally administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions. SIGNIFICANCE STATEMENT: This study investigated the association of UGT2B17 gene deletion and gut bacterial ß-glucuronidases with testosterone disposition in vitro. The experiments revealed upregulation of AKR1D1 and AKR1C4 in UGT2B17 deletion individuals, and the role of these enzymes to inactivate testosterone to 5ß-dihydrotestosterone and 3α, 5ß-tetrahydrotestosterone, respectively. Key gut bacterial species responsible for testosterone glucuronide activation were identified. These data are important for explaining the disposition of exogenously administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions.


Assuntos
Di-Hidrotestosterona , Glucuronidase , Masculino , Humanos , Di-Hidrotestosterona/metabolismo , Testosterona/metabolismo , Fígado/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo
9.
Sci Rep ; 12(1): 17435, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261446

RESUMO

The hydrolysis of xenobiotic glucuronides by gut bacterial glucuronidases reactivates previously detoxified compounds resulting in severe gut toxicity for the host. Selective bacterial ß-glucuronidase inhibitors can mitigate this toxicity but their impact on wider host metabolic processes has not been studied. To investigate this the inhibitor 4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4',5':4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine (UNC10201652, Inh 9) was administered to mice to selectively inhibit a narrow range of bacterial ß-glucuronidases in the gut. The metabolomic profiles of the intestinal contents, biofluids, and several tissues involved in the enterohepatic circulation were measured and compared to control animals. No biochemical perturbations were observed in the plasma, liver or gall bladder. In contrast, the metabolite profiles of urine, colon contents, feces and gut wall were altered compared to the controls. Changes were largely restricted to compounds derived from gut microbial metabolism. This work establishes that inhibitors targeted towards bacterial ß-glucuronidases modulate the functionality of the intestinal microbiota without adversely impacting the host metabolic system.


Assuntos
Microbioma Gastrointestinal , Glucuronidase , Camundongos , Animais , Glucuronidase/metabolismo , Microbioma Gastrointestinal/fisiologia , Xenobióticos , Bactérias/metabolismo , Morfolinas
10.
Nat Microbiol ; 7(11): 1817-1833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266335

RESUMO

Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genus Variovorax via an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect the Variovorax auxin degradation locus to define the genes iadDE as necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference. We determine the crystal structures and binding properties of the operon's MarR-family repressor with IAA and other auxins. Auxin degradation operons were identified across the bacterial tree of life and we define two distinct types on the basis of gene content and metabolic products: iac-like and iad-like. The structures of MarRs from representatives of each auxin degradation operon type establish that each has distinct IAA-binding pockets. Comparison of representative IAA-degrading strains from diverse bacterial genera colonizing Arabidopsis plants show that while all degrade IAA, only strains containing iad-like auxin-degrading operons interfere with auxin signalling in a complex synthetic community context. This suggests that iad-like operon-containing bacterial strains, including Variovorax species, play a key ecological role in modulating auxins in the plant microbiome.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Plantas/metabolismo
11.
Mol Omics ; 18(10): 896-907, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36169030

RESUMO

The gut microbiota impact numerous aspects of human physiology, including the central nervous system (CNS). Emerging work is now focusing on the microbial factors underlying the bi-directional communication network linking host and microbial systems within the gastrointestinal tract to the CNS, the "gut-brain axis". Neurotransmitters are key coordinators of this network, and their dysregulation has been linked to numerous neurological disease states. As the bioavailability of neurotransmitters is modified by gut microbes, it is critical to unravel the influence of the microbiota on neurotransmitters in the context of the gut-brain axis. Here we review foundational studies that defined molecular relationships between the microbiota, neurotransmitters, and the gut-brain axis. We examine links between the gut microbiome, behavior, and neurological diseases, as well as microbial influences on neurotransmitter bioavailability and physiology. Finally, we review multi-omics technologies uniquely applicable to this area, including high-throughput genetics, modern metabolomics, structure-guided metagenomics, targeted proteomics, and chemogenetics. Interdisciplinary studies will continue to drive the discovery of molecular mechanisms linking the gut microbiota to clinical manifestations of neurobiology.


Assuntos
Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Humanos , Encéfalo , Microbioma Gastrointestinal/fisiologia , Neurotransmissores , Eixo Encéfalo-Intestino
12.
Xenobiotica ; 52(8): 904-915, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36149349

RESUMO

In vitro incubation of the bacterial ß-glucuronidase inhibitor UNC10201652 (4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4',5':4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine) with mouse, rat, and human liver microsomes and hepatocytes generated metabolites at multiple sites via deethylations, oxidations and glucuronidation.Two UNC10201652 metabolites were detected in human, and four in mouse and rat liver microsomal incubations. Intrinsic clearances of UNC10201652 in human, mouse, and rat liver microsomes were 48.1, 115, and 194 µL/min/mg respectively.Intrinsic clearances for human, mouse, and rat hepatocytes were 20.9, 116, and 140 µL/min/106 cells respectively and 24 metabolites were characterised: 9 for human and 11 for both rodent species.Plasma clearance was 324.8 mL/min/kg with an elimination half-life of 0.66 h following IV administration of UNC10201652 to Swiss Albino mice (3 mg/kg). Pre-treatment with 1-aminobenzotriazole (ABT) decreased clearance to 127.43 mL/min/kg, increasing the t1/2 to 3.66 h.Comparison of profiles after oral administration of UNC10201652 to control and pre-treated mice demonstrated a large increase in Cmax (from 15.2 ng/mL to 184.0 ng/mL), a delay in Tmax from 0.25 to 1 h and increased AUC from 20.1 to 253 h ng/ml. ABT pre-treatment increased oral bioavailability from 15% to >100% suggesting that CYP450's contributed significantly to UNC10201652 clearance in mice.


Assuntos
Inibidores Enzimáticos , Animais , Humanos , Camundongos , Ratos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Morfolinas/metabolismo , Morfolinas/farmacologia , Piperazinas/metabolismo , Piperazinas/farmacocinética
13.
Gut Microbes ; 14(1): 2107289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953888

RESUMO

Mycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial ß-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract. GUS enzymes demonstrate distinct substrate preferences based on their structural features, and gut microbial GUS enzymes that reactivate MPA have not been identified. Here, we compare the fecal microbiomes of transplant recipients receiving MMF to healthy individuals using shotgun metagenomic sequencing. We find that neither microbial composition nor the presence of specific structural classes of GUS genes are sufficient to explain the differences in MPA reactivation measured between fecal samples from the two cohorts. We next employed a GUS-specific activity-based chemical probe and targeted metaproteomics to identify and quantify the GUS proteins present in the human fecal samples. The identification of specific GUS enzymes was improved by using the metagenomics data collected from the fecal samples. We found that the presence of GUS enzymes that bind the flavin mononucleotide (FMN) is significantly correlated with efficient MPA reactivation. Furthermore, structural analysis identified motifs unique to these FMN-binding GUS enzymes that provide molecular support for their ability to process this drug glucuronide. These results indicate that FMN-binding GUS enzymes may be responsible for reactivation of MPA and could be a driving force behind MPA-induced GI toxicity.


Assuntos
Microbioma Gastrointestinal , Mononucleotídeo de Flavina , Microbioma Gastrointestinal/fisiologia , Glucuronídeos , Humanos , Imunossupressores , Ácido Micofenólico/uso terapêutico , Proteômica
14.
Curr Opin Struct Biol ; 75: 102416, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841748

RESUMO

Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.


Assuntos
Microbioma Gastrointestinal , Metagenômica , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenoma , Proteômica
15.
Nat Microbiol ; 7(5): 680-694, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484230

RESUMO

Intestinal proteases mediate digestion and immune signalling, while increased gut proteolytic activity disrupts the intestinal barrier and generates visceral hypersensitivity, which is common in irritable bowel syndrome (IBS). However, the mechanisms controlling protease function are unclear. Here we show that members of the gut microbiota suppress intestinal proteolytic activity through production of unconjugated bilirubin. This occurs via microbial ß-glucuronidase-mediated conversion of bilirubin conjugates. Metagenomic analysis of faecal samples from patients with post-infection IBS (n = 52) revealed an altered gut microbiota composition, in particular a reduction in Alistipes taxa, and high gut proteolytic activity driven by specific host serine proteases compared with controls. Germ-free mice showed 10-fold higher proteolytic activity compared with conventional mice. Colonization with microbiota samples from high proteolytic activity IBS patients failed to suppress proteolytic activity in germ-free mice, but suppression of proteolytic activity was achieved with colonization using microbiota from healthy donors. High proteolytic activity mice had higher intestinal permeability, a higher relative abundance of Bacteroides and a reduction in Alistipes taxa compared with low proteolytic activity mice. High proteolytic activity IBS patients had lower fecal ß-glucuronidase activity and end-products of bilirubin deconjugation. Mice treated with unconjugated bilirubin and ß-glucuronidase-overexpressing E. coli significantly reduced proteolytic activity, while inhibitors of microbial ß-glucuronidases increased proteolytic activity. Together, these data define a disease-relevant mechanism of host-microbial interaction that maintains protease homoeostasis in the gut.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Animais , Bilirrubina , Endopeptidases , Escherichia coli , Microbioma Gastrointestinal/fisiologia , Glucuronidase/genética , Humanos , Camundongos , Serina Proteases/genética
16.
Nat Commun ; 13(1): 136, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013263

RESUMO

Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial ß-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Carcinógenos/antagonistas & inibidores , Colite/prevenção & controle , Neoplasias Colorretais/prevenção & controle , Glucuronidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Triclosan/antagonistas & inibidores , Animais , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/toxicidade , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotransformação , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Colite/induzido quimicamente , Colite/enzimologia , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triclosan/química , Triclosan/metabolismo , Triclosan/toxicidade
17.
Drug Metab Dispos ; 49(8): 683-693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074730

RESUMO

The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by ß-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Eliminação Hepatobiliar , Inativação Metabólica/efeitos dos fármacos , Irinotecano , Transportadores de Ânions Orgânicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Carboxilesterase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Glucuronidase/metabolismo , Eliminação Hepatobiliar/efeitos dos fármacos , Eliminação Hepatobiliar/fisiologia , Humanos , Irinotecano/análogos & derivados , Irinotecano/farmacocinética , Irinotecano/toxicidade , Fígado/enzimologia , Inibidores da Topoisomerase I/farmacocinética , Inibidores da Topoisomerase I/toxicidade
18.
Science ; 373(6553): 420-425, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34140391

RESUMO

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. In Arabidopsis, a subfamily of "helper" NLRs is required by many "sensor" NLRs. Active NRG1.1 oligomerized, was enriched in plasma membrane puncta, and conferred cytoplasmic calcium ion (Ca2+) influx in plant and human cells. NRG1.1-dependent Ca2+ influx and cell death were sensitive to Ca2+ channel blockers and were suppressed by mutations affecting oligomerization or plasma membrane enrichment. Ca2+ influx and cell death mediated by NRG1.1 and ACTIVATED DISEASE RESISTANCE 1 (ADR1), another helper NLR, required conserved negatively charged N-terminal residues. Whole-cell voltage-clamp recordings demonstrated that Arabidopsis helper NLRs form Ca2+-permeable cation channels to directly regulate cytoplasmic Ca2+ levels and consequent cell death. Thus, helper NLRs transduce cell death signals directly.


Assuntos
Proteínas de Arabidopsis/química , Canais de Cálcio/química , Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas NLR/química , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas NLR/metabolismo , Técnicas de Patch-Clamp , Domínios Proteicos , Estrutura Secundária de Proteína
19.
Biochemistry ; 59(40): 3939-3950, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32993284

RESUMO

Phase II drug metabolism inactivates xenobiotics and endobiotics through the addition of either a glucuronic acid or sulfate moiety prior to excretion, often via the gastrointestinal tract. While the human gut microbial ß-glucuronidase enzymes that reactivate glucuronide conjugates in the intestines are becoming well characterized and even controlled by targeted inhibitors, the sulfatases encoded by the human gut microbiome have not been comprehensively examined. Gut microbial sulfatases are poised to reactivate xenobiotics and endobiotics, which are then capable of undergoing enterohepatic recirculation or exerting local effects on the gut epithelium. Here, using protein structure-guided methods, we identify 728 distinct microbiome-encoded sulfatase proteins from the 4.8 million unique proteins present in the Human Microbiome Project Stool Sample database and 1766 gut microbial sulfatases from the 9.9 million sequences in the Integrated Gene Catalogue. We purify a representative set of these sulfatases, elucidate crystal structures, and pinpoint unique structural motifs essential to endobiotic sulfate processing. Gut microbial sulfatases differentially process sulfated forms of the neurotransmitters serotonin and dopamine, and the hormones melatonin, estrone, dehydroepiandrosterone, and thyroxine in a manner dependent both on variabilities in active site architecture and on markedly distinct oligomeric states. Taken together, these data provide initial insights into the structural and functional diversity of gut microbial sulfatases, providing a path toward defining the roles these enzymes play in health and disease.


Assuntos
Bactérias/enzimologia , Microbioma Gastrointestinal , Microbiota , Sulfatases/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Domínio Catalítico , Fezes/microbiologia , Genes Bacterianos , Humanos , Modelos Moleculares , Conformação Proteica , Sulfatases/química , Sulfatases/genética
20.
Toxins (Basel) ; 12(9)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932981

RESUMO

Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.


Assuntos
Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Microbioma Gastrointestinal , Insuficiência Renal Crônica/microbiologia , Uremia/microbiologia , Animais , Progressão da Doença , Disbiose , Humanos , Ligação Proteica , Diálise Renal , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/terapia , Uremia/metabolismo , Uremia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...